pan-HMR Amyloid-beta 38 protein Antibody Pair - BSA and Azide free (ab253686)
Key features and details
- Unconjugated capture and detector antibodies
- Adaptable to any antibody pair-based assay format
- Antibody concentration ~ 1 mg/ml
- BSA and azide free buffer - ready for conjugation
- Reacts with: Mouse, Rat, Human
Overview
-
Product name
pan-HMR Amyloid-beta 38 protein Antibody Pair - BSA and Azide free
See all Amyloid Precursor Protein kits -
Assay type
ELISA set -
Range
7.8 pg/ml - 500 pg/ml -
Species reactivity
Reacts with: Mouse, Rat, Human -
Product overview
- Human Amyloid-beta 38 Antibody Pair is a matched pair of unconjugated recombinant rabbit monoclonal capture and detection antibodies used to quantify Human Amyloid-beta 38 in sandwich ELISAs and many other pair-based applications.
- The pair can be used in variety of assays and platforms including but not limited to:
- - Sandwich ELISA
- - FRET/TR-FRET/HTR
- - Meso Scale Discovery® (MSD®)
- - Luminex® and bead-based assays
- - AlphaLISA®/AlphaScreen®
- - DELFIA® immunoassays
- - Simoa® and Single Molecule Counting (SMC™) immunoassays
- - Multiplex
- Our antibody pairs are supplied in a carrier-free format that is conjugation-ready:
- - Buffer free of BSA, sodium azide, and glycerol for higher conjugation efficiency.
- - Concentration of ~1 mg/ml as measured by the protein A280 method.
- Use our conjugation kits for antibody conjugates that are ready-to-use in as little as 20 minutes with
- We can label antibodies for you: get in touch today to discuss how we can help accelerate your assay development with custom conjugation services.
- Pairs are screened in biological samples, including plasma and serum, to ensure specificity in complex samples.
- Please note:
- The recommended antibody orientation is based on internal optimization in sandwich ELISA. Antibody orientation is assay dependent and needs to be optimized for each assay type.
- The range provided for this antibody pair is based on initial sandwich ELISA validation data using recombinant protein. Performance and range of the antibody pair will depend on the specific characteristics of your assay, including standard protein selection.
- We guarantee the product works in sandwich ELISA, but we do not guarantee the sensitivity or dynamic range of the antibodies in other assays.
- Antibody properties:
- Capture antibody: recombinant rabbit monoclonal (unconjugated) – 100 µg
- Detector antibody: recombinant rabbit monoclonal (unconjugated) - 100 µg
- Concentration: ~1 mg/ml
- Storage buffer: 100% PBS
- Form: Liquid
- Isotype: IgG
- Recombinant monoclonal antibodies offer several advantages including:
- - High batch-to-batch consistency and reproducibility
- - Improved sensitivity and specificity
- - Long-term security of supply
- - Animal-free production
- For more information see here.
- Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
- Meso Scale Discovery and MSD are registered trademarks of Meso Scale Diagnostics, LLC.
- Luminex is a trademark of Luminex Corporation, registered in the US and other countries.
- AlphaLISA, AlphaScreen, and DELFIA are registered trademarks of PerkinElmer, Inc.
- Simoa is a registered trademark of Quanterix, Inc.
- SMC is a registered trademark of Merck KGaA, Darmstadt, Germany.
-
Tested applications
Suitable for: Sandwich ELISAmore details -
Platform
Reagents
Properties
-
Storage instructions
Store at +4°C. Please refer to protocols. -
Carrier free
Yes -
Components Identifier 10 x 96 tests pan-HMR Amyloid-beta 38 protein Capture Antibody (unconjugated) — pan-HMR Amyloid-beta 38 protein Detector Antibody (unconjugated) — -
Research areas
-
Function
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.
Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.
Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.
The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). -
Tissue specificity
Expressed in all fetal tissues examined with highest levels in brain, kidney, heart and spleen. Weak expression in liver. In adult brain, highest expression found in the frontal lobe of the cortex and in the anterior perisylvian cortex-opercular gyri. Moderate expression in the cerebellar cortex, the posterior perisylvian cortex-opercular gyri and the temporal associated cortex. Weak expression found in the striate, extra-striate and motor cortices. Expressed in cerebrospinal fluid, and plasma. Isoform APP695 is the predominant form in neuronal tissue, isoform APP751 and isoform APP770 are widely expressed in non-neuronal cells. Isoform APP751 is the most abundant form in T-lymphocytes. Appican is expressed in astrocytes. -
Involvement in disease
Alzheimer disease 1
Cerebral amyloid angiopathy, APP-related -
Sequence similarities
Belongs to the APP family.
Contains 1 BPTI/Kunitz inhibitor domain. -
Domain
The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.
The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N- or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis. -
Post-translational
modificationsProteolytically processed under normal cellular conditions. Cleavage either by alpha-secretase, beta-secretase or theta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, and the retention of corresponding membrane-anchored C-terminal fragments, C80, C83 and C99. Subsequent processing of C80 and C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is non-amyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gamma-CTF(50), gamma-CTF(57) and gamma-CTF(59). Many other minor beta-amyloid peptides, beta-amyloid 1-X peptides, are found in cerebral spinal fluid (CSF) including the beta-amyloid X-15 peptides, produced from the cleavage by alpha-secretase and all terminating at Gln-686.
Proteolytically cleaved by caspases during neuronal apoptosis. Cleavage at Asp-739 by either caspase-6, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides.
N- and O-glycosylated. O-glycosylation on Ser and Thr residues with core 1 or possibly core 8 glycans. Partial tyrosine glycosylation (Tyr-681) is found on some minor, short beta-amyloid peptides (beta-amyloid 1-15, 1-16, 1-17, 1-18, 1-19 and 1-20) but not found on beta-amyloid 38, beta-amyloid 40 nor on beta-amyloid 42. Modification on a tyrosine is unusual and is more prevelant in AD patients. Glycans had Neu5AcHex(Neu5Ac)HexNAc-O-Tyr, Neu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr and O-AcNeu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr structures, where O-Ac is O-acetylation of Neu5Ac. Neu5AcNeu5Ac is most likely Neu5Ac 2,8Neu5Ac linked. O-glycosylations in the vicinity of the cleavage sites may influence the proteolytic processing. Appicans are L-APP isoforms with O-linked chondroitin sulfate.
Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific. Phosphorylation can affect APP processing, neuronal differentiation and interaction with other proteins. Phosphorylated on Thr-743 in neuronal cells by Cdc5 kinase and Mapk10, in dividing cells by Cdc2 kinase in a cell-cycle dependent manner with maximal levels at the G2/M phase and, in vitro, by GSK-3-beta. The Thr-743 phosphorylated form causes a conformational change which reduces binding of Fe65 family members. Phosphorylation on Tyr-757 is required for SHC binding. Phosphorylated in the extracellular domain by casein kinases on both soluble and membrane-bound APP. This phosphorylation is inhibited by heparin.
Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and Cys-158, and the formation of a disulfide bond. In vitro, the APP-Cu(+) complex in the presence of hydrogen peroxide results in an increased production of beta-amyloid-containing peptides.
Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP).
Beta-amyloid peptides are degraded by IDE. -
Cellular localization
Membrane. Membrane, clathrin-coated pit. Cell surface protein that rapidly becomes internalized via clathrin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alpha-secretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. Gamma-CTF(59) peptide is located to both the cytoplasm and nuclei of neurons. It can be translocated to the nucleus through association with APBB1 (Fe65). Beta-APP42 associates with FRPL1 at the cell surface and the complex is then rapidly internalized. APP sorts to the basolateral surface in epithelial cells. During neuronal differentiation, the Thr-743 phosphorylated form is located mainly in growth cones, moderately in neurites and sparingly in the cell body. Casein kinase phosphorylation can occur either at the cell surface or within a post-Golgi compartment. Associates with GPC1 in perinuclear compartments. Colocalizes with SORL1 in a vesicular pattern in cytoplasm and perinuclear regions. - Information by UniProt
-
Alternative names
- A4 amyloid protein
- A4_HUMAN
- AAA
see all -
Database links
- Entrez Gene: 351 Human
- Entrez Gene: 11820 Mouse
- Entrez Gene: 54226 Rat
- Omim: 104760 Human
- SwissProt: P05067 Human
- SwissProt: P12023 Mouse
- SwissProt: P08592 Rat
- Unigene: 434980 Human
see all
Images
-
To learn more about the advantages of recombinant antibodies see here.