Human Agrin Antibody Pair - BSA and Azide free (ab241894)
Key features and details
- Unconjugated capture and detector antibodies
- Adaptable to any antibody pair-based assay format
- Antibody concentration ~ 1 mg/ml
- BSA and azide free buffer - ready for conjugation
- Reacts with: Human
Overview
-
Product name
Human Agrin Antibody Pair - BSA and Azide free
See all Agrin kits -
Assay type
ELISA set -
Range
31.25 pg/ml - 2000 pg/ml -
Species reactivity
Reacts with: Human -
Product overview
The Antibody Pair can be used to quantify Human Agrin. BSA and Azide free antibody pairs include unconjugated capture and detector antibodies suitable for sandwich ELISAs. The antibodies are provided at an approximate concentration of 1 mg/ml as measured by the protein A280 method. The recommended antibody orientation is based on internal optimization for ELISA-based assays. Antibody orientation is assay dependent and needs to be optimized for each assay type. Both capture and detector antibodies are rabbit monoclonal antibodies delivering consistent, specific, and sensitive results.
For additional information on the performance of the antibody pair, see the equivalent SimpleStep ELISA® Kit (ab216945), which uses the same antibodies. However, due to differences in their formulation, this antibody pair cannot be used with the consumables provided with our SimpleStep ELISA Kits. Please note that the range provided for the pairs is only an estimation based on the performance of the related product using the same antibody pair. Performance of the antibody pair will depend on the specific characteristics of your assay. We guarantee the product works in sandwich ELISA, but we do not guarantee the sensitivity or dynamic range of the antibody pair in your assay.
Download SDS here.
-
Tested applications
Suitable for: Sandwich ELISAmore details -
Platform
Reagents
Properties
-
Storage instructions
Store at +4°C. Please refer to protocols. -
Carrier free
Yes -
Components 10 x 96 tests Human Agrin Capture Antibody (unconjugated) 1 x 100µg Human Agrin Detector Antibody (unconjugated) 1 x 100µg -
Research areas
-
Function
Isoform 1: heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clustering. AGRN function in neurons is highly regulated by alternative splicing, glycan binding and proteolytic processing. Modulates calcium ion homeostasis in neurons, specifically by inducing an increase in cytoplasmic calcium ions. Functions differentially in the central nervous system (CNS) by inhibiting the alpha(3)-subtype of Na+/K+-ATPase and evoking depolarization at CNS synapses. This secreted isoform forms a bridge, after release from motor neurons, to basal lamina through binding laminin via the NtA domain.
Isoform 2: transmembrane form that is the predominate form in neurons of the brain, induces dendritic filopodia and synapse formation in mature hippocampal neurons in large part due to the attached glycosaminoglycan chains and the action of Rho-family GTPases.
Isoform 1, isoform 4 and isoform 5: neuron-specific (z+) isoforms that contain C-terminal insertions of 8-19 AA are potent activators of AChR clustering. Isoform 5, agrin (z+8), containing the 8-AA insert, forms a receptor complex in myotubules containing the neuronal AGRN, the muscle-specific kinase MUSK and LRP4, a member of the LDL receptor family. The splicing factors, NOVA1 and NOVA2, regulate AGRN splicing and production of the 'z' isoforms.
Isoform 3 and isoform 6: lack any 'z' insert, are muscle-specific and may be involved in endothelial cell differentiation.
Agrin N-terminal 110 kDa subunit: is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling.
Agrin C-terminal 22 kDa fragment: this released fragment is important for agrin signaling and to exert a maximal dendritic filopodia-inducing effect. All 'z' splice variants (z+) of this fragment also show an increase in the number of filopodia. -
Tissue specificity
Expressed in basement membranes of lung and kidney. Muscle- and neuron-specific isoforms are found. Isoforms (y+) with the 4 AA insert and (z+8) isoforms with the 8 AA insert are all neuron-specific. Isoforms (z+11) are found in both neuronal and non-neuronal tissues. -
Involvement in disease
Myasthenic syndrome, congenital, 8 -
Sequence similarities
Contains 4 EGF-like domains.
Contains 9 Kazal-like domains.
Contains 2 laminin EGF-like domains.
Contains 3 laminin G-like domains.
Contains 1 NtA (N-terminal agrin) domain.
Contains 1 SEA domain. -
Domain
The NtA domain, absent in TM-agrin, is required for binding laminin and connecting to basal lamina.
Both laminin G-like 2 (G2) and laminin G-like 3 (G3) domains are required for alpha-dystroglycan/DAG1 binding. G3 domain is required for C-terminal heparin, heparan sulfate and sialic acid binding. -
Post-translational
modificationsContains heparan and chondroitin sulfate chains and alpha-dystroglycan as well as N-linked and O-linked oligosaccharides. Glycosaminoglycans (GAGs), present in the N-terminal 110 kDa fragment, are required for induction of filopodia in hippocampal neurons. The first cluster (Gly/Ser-rich) for GAG attachment contains heparan sulfate (HS) chains and the second cluster (Ser/Thr-rich), contains chondroitin sulfate (CS) chains. Heparin and heparin sulfate binding in the G3 domain is independent of calcium ions. Binds heparin with a stoichiometry of 2:1. Binds sialic acid with a stoichiometry of 1:1 and binding requires calcium ions.
At synaptic junctions, cleaved at two conserved sites, alpha and beta, by neurotrypsin. Cleavage at the alpha-site produces the agrin N-terminal 110-kDa subunit and the agrin C-terminal 110-kDa subunit. Further cleavage of agrin C-terminal 110-kDa subunit at the beta site produces the C-terminal fragments, agrin C-terminal 90 kDa fragment and agrin C-terminal 22 kDa fragment. Excessive cleavage at the beta-site releases large amounts of the agrin C-terminal 22 kDa fragment leading to destabilization at the neuromuscular junction (NMJ). -
Cellular localization
Cell junction, synapse. Cell membrane and Secreted, extracellular space, extracellular matrix. Synaptic basal lamina at the neuromuscular junction. - Information by UniProt
-
Alternative names
- AGRIN
- Agrin C-terminal 22 kDa fragment
- Agrin proteoglycan
see all -
Database links
- Entrez Gene: 375790 Human
- Omim: 103320 Human
- SwissProt: O00468 Human
- Unigene: 273330 Human
- Unigene: 602356 Human
Images
-
To learn more about the advantages of recombinant antibodies see here.